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Biotransformation and Induction:
Implications for Toxicity, Bioaccumulation
and Monitoring of Environmental
Xenobiotics in Fish
by Kevin M. Kleinow,* Mark J. Melancon,* and
John J. Lech*

Biotransformation of xenobiotics in fish occurs by many of the same reactions as in mammals. These
reactions have been shown to affect the bioaccumulation, persistence, residue dynamics, and toxicity of
select chemicals in fish. P450-dependent monooxygenase activity of fish can be induced by polycyclic
aromatic hydrocarbons, but phenobarbital-type agents induce poorly, if at all. Fish monooxygenase activity
exhibits ideal temperature compensation and sex-related variation. Induction of monooxygenase activity
by polycyclic aromatic hydrocarbons can result in qualitative as well as quantitative changes in the
metabolic profile of a chemical. Induction can also alter toxicity. In addition, multiple P-450 isozymes
have been described for several fish species. The biotransformation products of certain chemicals have
been related to specific P-450 isozymes, and the formation of these products can be influenced by induction.
Exposure of fish to low levels of certain environmental contaminants has resulted in induction of specific
monooxygenase activities and monitoring of such activities has been suggested as a means of identifying
areas of pollutant exposure in the wild.

It has been clearly established over the past 20 years
that fish possess the ability to perform a wide variety
of biotransformation reactions (1-3). Recent studies on
the biotransformation of xenobiotic chemicals in fish
have been focused on the specific metabolites produced,
since these metabolic reactions affect distribution, ac-
cumulation, and toxicity of chemicals (4).

Xenobiotic chemicals may also affect the distribution,
accumulation, and toxicity of other chemicals by mod-
ifying the activity of enzymes that carry out these bio-
transformation processes. In particular, hepatic micro-
somal monooxygenase (MO) activity may be increased
or decreased by inducing agents (5) and by inhibitors,
respectively. Induction ofMO activity, which can affect
the biotransformation of a xenobiotic chemical both
qualitatively and quantitatively, may be important en-
vironmentally because induction can be effected by
ubiquitous chemicals such as polychlorinated biphenyls
(PCBs) and polynuclear aromatic hydrocarbons (PAHs).
In addition, the modification of MO activity itself may
be a sensitive response to certain environmental pol-
lutants and may serve as a biological monitor for ex-
posure to certain classes of xenobiotic chemicals.
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The present report will review, by use of pertinent
examples, the relationship of biotransformation and in-
duction to the disposition and toxicity of xenobiotic
chemicals. In this review we will discuss those factors
influencing this interrelationship as well as the envi-
ronmental significance of biotransformation and induc-
tion as related to aquatic toxicology and monitoring.

Biotransformation in Fish
Table 1 lists the biotransformation reactions that have

been demonstrated in vivo in fish. Xenobiotic biotrans-
formation in fish can occur via the cytochrome P-450-
dependent monooxygenase system, various conjugating
enzymes and enzymes which catalyze hydrolytic and
reductive reactions. It is evident from these studies that
fish are capable ofboth phase I (nonsynthetic) and phase
II (synthetic) reactions. The scope of these biotrans-
formation reactions appear to be similar to those in
mammals. Although the types of biotransformation re-
actions are similar, differences do exist between fish
and mammals in the metabolic handling of chemicals.
Among these are differences in reaction rates, the rel-
ative contribution of a given pathway and the products
formed. The biotransformation of aflatoxin B1 (AFB) is
a case in point. In trout, the glucuronide of aflatoxicol
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Table 1. Biotransformation reactions demonstrated in fish in
vivo.

Reaction Compound Species Reference
Acetylation Ethyl m-amino- Dogfish shark (6)

benzoate
Ethyl m-amino- Rainbow trout (7)

benzoate
Glutathione Molinate Carp (8)

conjugation 1-Chloro-2, 4-dini- Rainbow trout (9)
trobenzene

Sulfate conjugation Pentachlorophenol Goldfish (10)
Taurine conjugation 2,4-D Flounder (11)
Glucuronide conju- 3-Trifluoromethyl- Rainbow trout (12)

gation 4-nitrophenol
Pentachlorophenol Rainbow trout (13)
Aflatoxin B1 Rainbow trout (14)

Glycine, glucuron- Aminobenzoic acid Flounder, (15)
ide conjugation Goosefish

Hydrolysis 2,4-D esters Catfish, blue- (16)
gill

Diethylhexyl- Rainbow trout (17)
phthalate

Malathion Pinfish (18)
N-Dealkylation Dinitramine Carp (19)
O-Dealkylation p-Nitrophenyleth- Fathead min- (20)

ers now
Pentachloroanisole Rainbow trout (13)
Fenitrothion Rainbow trout (21)

Oxidation Naphthalene, Mudsucker, (22)
benzo(a)pyrene sculpin

Naphthalene Coho salmon (23)
Methylnaphthalene Rainbow trout (24)
Rotenone Carp (25)
Rotenone Bluegill (26)
4-(2,4-DB) Bluegill (27)
Aldrin, dieldrin Mosquito fish (28)

was the major aflatoxin conjugate in bile while the glu-
tathione conjugate of aflatoxin was only a minor bio-
transformation product (14). In contrast, the aflatoxin
glutathione conjugate was found to be the major biliary
metabolite in the rat (29). Interspecies differences have
also been noted for the unconjugated metabolites of
AFB (30-33). These differences may be related to the
extreme sensitivity of rainbow trout to aflatoxin-in-
duced carcinogenesis. Also, differences in the metabo-
lism of 2-methylnaphthalene (2-MeN) have been dem-
onstrated between rats and rainbow trout (34,35). The
in vivo methyl group oxidation of 2-MeN was an im-
portant route of biotransformation only in the rat while
formation of dihydrodiols was of importance in both or-
ganisms. These examples can be extended to the bio-
transformation of steroids. Androstenedione has been
shown to be hydroxylated by trout microsomes pri-
marily in the 6j position, while the rat microsomes yield
hydroxylation in the 61, 16a, and 7at positions (36,37).
Species differences were also evident in the relative
contribution of a given benzo[al]pyrene (BaP) biotrans-
formation pathway (38-40). These studies have indi-
cated that a greater proportion of BaP was converted
to BaP-7,8-diol by liver microsomes of the sole and
flounder than by rat microsomes.
Although considerable variation exists between

aquatic species with regard to basal MO enzyme activ-
ities and cytochrome(s) P-450 content (1), few studies
have comprehensively addressed differences in xeno-
biotic biotransformation patterns among fish species. A
review of biotransformation of BaP in fish shows that
fish species can differ substantially in the extent of me-
tabolism at various positions on the molecule (41). As a
generalization, microsomes from teleost fish (42) in vitro
produce more ring diols than those from species such
as the little skate, which forms more phenolic metab-
olites (43).
Large variations in biotransformation pathways be-

tween individual fish of the same species have also been
demonstrated (44). Results of these studies, involving
biotransformation in feral scup, indicated that the var-
iation in metabolite profiles was correlated with the
epoxide hydrolase activity required for dihydrodiol for-
mation. The authors suggest that environmental factors
were influencing epoxide hydrolase, thus causing vari-
ation in the metabolite profile.
Although fish and mammals clearly possess many of

the same mechanisms for biotransformation, differences
do exist in the utilization of these pathways for the
biotransformation of a number of compounds. Differ-
ences between fish species in biotransformation also ap-
pear to exist. It is not yet clear which metabolic differ-
ences in certain species are inherent and which are a
result of factors derived from the previous life history
of the animals. The noted differences in biotransfor-
mation, however, may form the basis for differential
sensitivities of various species to xenobiotics.

Induction in Fish
Research focusing on the inducibility of biotransfor-

mation enzymes in fish has accelerated rapidly in recent
years. Studies utilizing prototype substrates have dem-
onstrated the inducibility of fish monooxygenase en-
zymes in many species (Table 2). The evidence for in-
duction in fish has come largely from experiments with
inducers of the PAH P1-450 type (i.e., Ba.P, 3-methyl-
cholanthrene [3-MC]). In addition, rainbow trout have
been shown to respond to the inducer isosafrole (55),
while variable results are obtained with novel inducer
pregnenolone-16a-carbonitrile (53,68,69).

In contrast to PAH induction, the evidence for phen-
obarbital (PB)-type induction in fish is ambiguous. Al-
though some workers have demonstrated induction in
fish with prototype substrates following treatment with
PB-type inducers, i.e., dichlorodiphenyltrichloroethane
(DDT), noncoplanar PCBs or PBBs, and phenylbuta-
zone (Table 3), the majority of studies have indicated a
general lack of response to PB-type induction (Table 4).
The factors responsible for these apparently disparate
results have not yet been resolved, but the apparent
refractile nature of fish to PB-type induction is probably
not due to a lack of bioavailability or to inhibition of
monooxygenation by the inducers (55).

It is of interest to note that for contrasting studies
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Table 2. Induction of monooxygenase activity in fish.

Tissue
Liver
Liver
Liver
Liver

Liver
Liver
Liver
Liver
Liver

Liver, kidney
Liver
Liver

Liver
Liver

Liver
Liver

Inducera
PCB, 3-MC
Petroleum
PCB
PCBs
PBBs
3-MC
PCN
DMBA, ,BNF
TCDD, ISOS
3-MC
I3NF
PCB
I3NF
PCB
PB, AFB, crude

oil
PCB, ,BNF
3-MC
Refinery

effluent
3-MC, ,BNF
3-MC
PCBs
PCBs, #2 fuel

oil
PCB
3-MC

Reference
(45)
(46)
(47)

(48-50)
(51)

(52-54)
(53)
(52)
(55)
(56)
b

(57)
(58)
(49)
(59)

(60)
(61)
(62)

(54, 63)
(64)
(65)
(66)

(67)
(54)

aPCBs, polychlorinated biphenyls; PBBs, polybrominated biphen-
yls; 3-MC, 3-methylcholanthrene; PCN, pregnenolone-16a-carboni-
trile; DMBA, dimethylbenzanthracene; INF, 3-naphthoflavone;
TCDD, tetrachlorodibenzodioxin; ISOS, isosafrole; BP, benzo(a)-pyr-
ene; AFB, aflatoxin.

b Melancon et al., unpublished data.

which grossly lend themselves to comparison [for 2,4,5-
2',4',5'-HCB (55,72) and dieldrin (71,76), PB-type in-
duction was demonstrated with dosages lower than
those utilized in studies lacking an inductive response.

However, the lower dosage of the inducer has not
proven to be a significant factor in a subsequent study
with rainbow trout exposed 10 days to 1 mg/L of PB
(78). Alternatively, it has been suggested that contam-
ination of the inducer with PAH-type agents and/or lack
of sufficient substrate specificity may be involved in the
observed induction by PB-type agents in certain studies
(65).
Recent studies have examined the incorporation of

[35S]-methionine into hepatic microsomal proteins of
rainbow trout following in vivo exposure to various
types of inducers (78,79). As shown in Figure 1, in-
creased methionine incorporation provided evidence of
de novo synthesis in conjunction with elevated catalytic
activity following PAH-type inducers. Thus, monoox-
ygenase induction, at least in part, is due to induction
of new enzymes rather than activation of existing pro-
teins. In contrast, these trout did not respond to PB-
type induction at the translational level (Fig. 1) or at
the catalytic level (78).
Recent successes in the purification of cytochrome P-

450 from scup (80) and rainbow trout (81,82) have con-
firmed earlier data, suggesting the existence of multiple
enzyme forms in fish. The major P-450 isozymes purified
from 3NF-induced rainbow trout and untreated scup
were labeled LM4b and P-450E, respectively. Both
forms were active towards BaP, and they exhibited
immunochemical cross reactivity. In addition, another
P-450, LM2, has been identified in rainbow trout. Im-
munochemical analysis has indicated that trout LM2 P-
450 is not inducible following exposure to PAH agents
(PNF, 3,4,5,3',4', 5'-HCB, Aroclor 1254) or PB-type
agents (PB, 2,4,5,2',4',5'-HCB; 78,83). In contrast,
LM4 content has been shown to increase with PAH-
type exposure (Fig. 2). Although constitutive trout P-
450 (LM2) does not appear to be inducible, it has been

Table 3. Phenobarbital-type induction in fish.

Compound
Phenylbutazone

Dichlorodiphenyl-
trichloroethane
(DDT)

Dichlorodiphenyl-
trichloroethane

Dieldrin

2,4,5,2',4',5'-
Hexachlorobi-
phenyl

Dose
10 ppb
100 ppb
0.1 ppm

Route
Waterborne/static,

10 days
Waterborne-transferred to
DDT-free water for 4 days,
then sacrificed

0.25 mg/100 g Diet, 36 days
every 2 days

0.25 mg/100 g Diet, 36 days
every 2 days

10 mg/kg IP, sacrificed
after 14 days

Phenobarbital 75 mg/kg IP 3 to 7 days

Effects
Type'
P-450
Aldrin epoxidation
BEND

Benzpyrene hydroxylase

ECOD
APD
Aniline hydroxylase
APD
Aniline hydroxylase
P-450
PNA-O-demethylase

NADPH cytochrome c reduc-
tase

N-Demethylation of p-chloro-
N-methylaniline at 7°C

aBEND, benzphetamine-N-demethylase; ECOD, ethoxycoumarin-O-deethylase; APD, aminopyrine-Na, demethylase; PNA, p-nitroanisole.
+ = significant induction; - = decline in activity; * = no change in activity.

Species
Brook trout
Brown trout
Coho salmon
Rainbow trout

Northern pike
Walleye
Catfish
Goldfish
Carp

Flounder
Sculpin

Scup
Sheepshead

Killifish

Mullet
Croaker

Species
Mummichog

Mummichog

Rainbow trout

Rainbow trout

Rainbow trout

Changeb

*

Reference
(70)

(61)

*

Carp

+
+ (71)

*

*

(72)

+ (73)
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Table 4. Studies that have not demonstrated phenobarbital-type induction in fish.

Effects
Species Compound Dose Route Typea Changeb Reference
Brook trout Dichlorodiphenyl-trichlo- 15 mg/mL Oral, 3 x Aldrin epoxidase * (74)

roethane (p, p'-DDT)

Dichlorodiphenyl-dichlo-
roethylene (p,p'-DDE)

Mirexc

2,4,5,2',4',5'-
Hexachlorobiphenyl

16.7 mg/mL

5 mg/kg

25 mg/kg
40 mg/kg

150 mg/kg

weekly
10 doses

Oral, 3 x
weekly

12 doses

IP, sacrificed
after 5 days

IP, sacrificed
after 5 days

IP, sacrificed
after 5 days

ECOD
P-450
Aniline hydroxylase
Aldrin epoxidase
ECOD
P-450
Aniline hydroxylase
BEND
ECOD
EROD
P-450
BEND
ECOD
EROD
P-450
BEND
ECOD
EROD
P-450

*

*

*

*

*

*

*

*

*

*

*

*

(55)

Phenobarbital

Phenobarbital

Dichlorodiphenyl-trichlo-
roethane

Dichlorodiphenyl-trichlo-
roethane

Phenobarbital

Phenylbutazone

Phenobarbital

Phenobarbital

2,4,2',4'-Tetrachlorobi-
phenyl

Phenobarbital

65 mg/kg

500 ppm

10 or 25 mg/100 g
diet

50 mg/kg daily

50 mg/kg daily

50 mg/kg daily

80 mg/kg daily

80 mg/kg daily for
5 days

100 mg/kg

20 mg/kg daily

IP, sacrificed BEND
after 72 hr ECOD

EROD
EMD

Oral diet for 3 BEND
weeks ECOD

EROD
Cytochrome B5
NADPH-cytochrome c reduc-

tase
Oral, assayed at Aniline hydroxylation

1, 2, 4 weeks APD
Acetanilide hydroxylation
Phenacetin dealkylation

IP, sacrificed at Aniline hydroxylation
day 5 APD

Acetanilide hydroxylation
Phenacetin dealkylation

Oral, sacrificed Aniline hydroxylation
at day 5 APD

Acetanilide hydroxylation
Phenacetin dealkylation

Oral, sacrificed Aniline hydroxylation
at day 5 APD

Acetanilide hydroxylation
Phenacetin dealkylation

IP, 7 days P-450
Androstenedione hydroxyla-

tion
Androstenedione hydroxyla-

tion
IP, sacrificed at P-450
day 14 PNA-O-demethylase

Benzo(a)pyrene
IP, sacrificed ECOD

after 10 days EROD
BEND
P-450

IP, 3 days P-450
NADPH cytochrome c reduc-

tase
Benzo(a)pyrene
Epoxide hydaolase

Table continues next page.

Rainbow trout Keponec

*

*

*

*

*

*

*

+

*

*

*

(50)

(75)

(76)

Rainbow trout

Rainbow trout

Rainbow trout

Rainbow trout

Rainbow trout

Rainbow trout

Carp

Northern pike

*

*

*

*

*

*

*

*

*

(68)

(53)

(60)

(77)

4

*

*

*

*

*

*

*

*

*

*

*
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Table 4. Continued

Effects
Species Compound Dose Route Typea Changeb Reference
Sheepshead 2,4,5,2',4',5'-Hexabromo- 20 mg/kg IP, sacrificed on P-450 * (65)

biphenyl day 17 NADPH cytochrome c reduc- *
tase *

AHH *
BEND *P
ECOD *
EROD

Phenobarbital 100 mg/kg days 1, IP, sacrificed P-450 *
4, 7 day 10 or 17 NADPH cytochrome c reduc- *

tase
AHH *
BEND *
ECOD *
EROD *

aAHH, aryl hydrocarbon hydroxylase; BEND, benzphetamine-N-demethylase; ECOD, 7-ethoxycoumarin-O-deethylase, EROD, 7-ethoxy-
resorufin-O-deethylase; APD, aminopyrine-N-demethylase; PNA, p-nitroanisole.

b + = Significant induction; - = Decline in activity; * = No change in activity.
'Novel inducers.

b

T ROUT

LM2 -

LM4 GM

0

I'U

0
z

I-W

'n

N
0

0

l.

CORN OI L BNF SAL INE PB
CONTROL CONTROL

55

MOLECULAR WEIGHT (x 103)

FIGURE 2. Hepatic microsomal P-450 isozyme content in rainbow
trout following intraperitoneal administration of either 100 mg/kg
3-naphthoflavone ((3NF) or a series of three 75 mg/kg phenobar-

bital (PB) injections at 0, 24, and 48 hr. The animals were sacrificed
66 and 90 hr following the initial inducer pretreatment for ,BNF
and PB, respectively. Adapted from Kleinow et al. (78).

65

FIGURE 1. Effect of inducer pretreatment (INF - 100 mg/kg, PB
- 75 mg/kg for three daily doses) upon in vivo [35S]-methionine
incorporation into hepatic microsomal protein of rainbow trout.
Laser densitometric scans of fluorgraphs resultant from SDS-
PAGE of microsomal protein: (a) corn oil control;
3NF; (b) saline control; phenobarbital. Adapted

from Kleinow et al. (78).

shown to be effective in activating AFB to the carcin-
ogenic AFB, 2,3-epoxide (84) and is active toward lauric
acid (85). Trout LM2 is similar to P-450 from PB-treated
rats with respect to the activation ofAFB to the epoxide
(86).

Induction of aryl hydrocarbon hydroxylase activity in
mammals has been shown to be regulated by the Ah
locus and mediated by the cytosolic Ah receptor (87).
Subsequent studies with rainbow trout, Atlantic
salmon, and lake trout have not been able to identify
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an analogous cytosolic receptor, despite induction with
PAH agents (88).

Modulators of Biotransformation
and Induction

Additional work is needed to further delineate and
define the inductive response in fish. The significance
of induction by select agents or lack of induction has not
been fully realized on a mechanistic and practical basis.

Temperature
A number of physiological factors have been identified

that modulate xenobiotic metabolizing enzyme activities
in fish. Temperature, sex, and age all influence hepatic
biotransformation enzyme activity directly and/or by
affecting induction. The liver microsomal P-450-depen-
dent MO system in fish has a lower temperature opti-
mum than mammalian MO systems (89). In addition,
fish hepatic monooxygenase activity responds to accli-
mation temperature in a compensatory manner (71,90-
92). Fish acclimated to colder temperatures exhibit
greater enzymatic activity than those acclimated to
warmer temperatures. Studies in mature rainbow trout
have indicated that some of these variations can be re-
lated to seasonal changes (93). Hepatic microsomal aryl
hydrocarbon hydroxylase (AHH) and ethoxycoumarin
0-deethylase (ECOD) activities were nearly identical
when measured at environmental temperatures in Au-
gust (20°C) and November (5WC). When these monoox-
ygenase activities were measured at an incubation tem-
perature of 18°C, specific and total activities were
considerably higher in the fish acclimated to 5°C.

Studies examining the effects of acclimation temper-
ature upon metabolism of BaP by liver extracts of the
trout incubated at 29°C indicate that substantially more
BaP was metabolized from fish acclimated at 7°C than
at 16°C. Lower environmental temperature not only
increased biotransformation, it also resulted in produc-
tion of a larger proportion of ethyl acetate-soluble me-
tabolites than water-soluble metabolites. It was sug-
gested that the greater conversion of BoxP by liver
extracts from rainbow trout of lower temperatures was
related to higher levels of polyunsaturated fatty acids
in microsomal membranes (94).

It has been recently proposed that the composition
of the phospholipid annulus surrounding the active site
of membrane-bound cytochrome P-450 may determine
the optimal temperature of cytochrome P-450 systems
(89). These studies demonstrated that the optimal tem-
peratures for both NADPH-cytochrome P-450 reduc-
tase and cytochrome P-450 in the rat and trout were
37°C and 26°C, respectively. The respective reductases
had similar temperature optima when added to micro-
somes from the same species. However, the tempera-
ture optimum of trout reductase was changed to 37°C
when it was added to rat microsomes. Similarly, the
temperature optimum of rat reductase was reduced to
26°C when it was added to trout microsomes. Parallel

shifts in the optimal temperature for 0-deethylation of
7-ethoxycoumarin also occurred when these reductases
were added to rat or trout microsomes.
Low temperature also influences the process of mon-

ooxygenase induction by increasing the time necessary
to reach the maximal enzyme activity (94-96). It has
been suggested that this prolonged response may be
due to altered inducer pharmacokinetics and/or a low
rate of protein synthesis (95). With regard to the for-
mer, reduced absorption rates for inducing agents have
been described in cold acclimated fish (96).
Temperature has been shown to have a pronounced

effect on hydrocarbon accumulation and retention in the
major organs of coho salmon (23). This study demon-
strated an inverse relationship between environmental
temperature and naphthalene retention in brain, liver,
kidney, and blood. Similar findings were evident for
naphthalene in the flounder which demonstrated much
greater muscle and liver naphthalene residues at 4°C
than at 12°C (97). It is evident that temperature plays
an important role in biotransformation, induction and
ultimately persistance. Considering the effect of tem-
perature on other processes, further work must define
the effect of compositional lipid changes on biotransfor-
mation as well as the implications of acclimation tem-
perature upon MO activity and other physiological pro-
cesses.

Age and Sex
Pronounced sex differences have been noted in con-

tent of hepatic cytochrome P-450 and MO activities in
a number of fish species (93,98). In general, male fish
have higher MO activities and P-450 content than fe-
males. Stegeman et al. (98) have demonstrated the he-
patic microsomal cytochrome P-450 levels in juvenile
brook trout were depressed by administration of estra-
diol 171 and elevated by testosterone (99). It was sug-
gested that androgens and estrogens were involved in
the regulation of hepatic cytochrome P-450 in the brook
trout. In addition, hormone effects on induction have
been noted in fish. Estradiol benzoate pretreatment of
rainbow trout has been shown to decrease the magni-
tude of induction with 1NF (69). Other studies have
demonstrated differential effects of inducing agents de-
pendent upon age and sex (53). These studies showed
that both p-nitroanisole-O-demethylase and
benzo(a)pyrene hydroxylase activities were higher in
male trout than in females following induction with 3-
MC and Clophen A 50 (Cl50). The total P-450 content
was increased for both sexes with 3-MC, but only in
females with Cl50. Greater induction was observed with
3-MC and C150 in older fish.
Age and sex have also been shown to influence the

inducibility of 6,B-hydroxylase by 3-MC and C150 in rain-
bow trout (68). 6,B-Hydroxylase activity was unaffected
by the inducers in prespawning females or spawning
fish of both sexes. In contrast, enzyme activity in ma-
turing females was induced by 3-MC and C150; in ju-
veniles C150 also caused induction. Hormonal factors
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were thought to be involved. Sexual differences have
also been demonstrated in the P-450 isozyme content in
some organs of the rainbow trout (100). Immunoquan-
titation indicated that the kidney of the male rainbow
trout contained much higher levels ofthe P-450 isozyme,
LM2, than found in the juvenile or female kidney. The
elevated levels of LM2 in the kidney of the male appear
to be responsible for the higher male cytochrome P-450
content and for greater hydroxylation rates of AFB,
progesterone, testosterone, and lauric acid. Further
studies on the influence of sex upon MO activity will
undoubtedly reveal additional P-450 isozyme and hor-
monal interactions.

Biotransformation and Induction:
Implications for Toxicity and
Bioaccumulation
Although it has been known for many years that bio-

transformation reactions are important modulators of
xenobiotic toxicity and bioaccumulation in mammals,
only recently has this relationship been investigated in
fish. Biotransformation produces metabolites that may
have different fates and dispositions than the parent
compound. Elimination may involve the parent com-
pound or any of the biotransformation products with
rate constants for metabolite elimination being greater
or less than the parent compound. The extent of chem-
ical biotransformation may appreciably affect the con-
centration of the chemical in the fish as well as its per-
sistence. Biotransformation reactions, through
alterations in chemical structure, may also significantly
modify the toxicological properties of a chemical. These
alterations may represent detoxification or lethal syn-
thesis from the parent compound. It has become evident
that along with factors influencing physiological consid-
erations, these biologically catalyzed conversions form
the basis for the mechanisms that modulate bioaccu-
mulation, persistence, residue dynamics and toxicity of
a chemical in aquatic organisms.
Data relating biotransformation to toxicity have pri-

marily come from studies using inhibitors on specific
biotransformation reactions. These studies show sig-
nificant changes in toxicity of a number of compounds
when biotransformation pathways such as glucuronide
conjugation (12) and oxidation (101) are inhibited. In-
hibition of 3-trifluoromethyl-4-nitrophenol (TFM) glu-
curonide formation by pretreatment with salicylamide,
a glucuronyl transferase inhibitor, increases the toxicity
of TFM to rainbow trout (Fig. 3). Increased toxicity
was accompanied by decreased biliary elimination of the
TFM glucuronide and increased levels of TFM in mus-
cle, brain, blood and heart. Studies with an organo-
chlorine-insecticide resistant population ofmosquito fish
have also shown increased tolerance to rotenone (103)
and pyrethroids (102), which was attributed to in-
creased monooxygenase activity. These conclusions
arose from experiments showing that treatment of re-
sistant fish with the MO inhibitor, sesamex, increased
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FIGURE 3. Effect of salicylamide upon the toxicity of waterborne 3-
trifluoromethyl-4-nitrophenol (TFM) in rainbow trout. Adapted
from Lech (12).
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FIGURE 4. Daily LCQ values for rotenone in rainbow trout. Adapted
from Erickson et al. (104).

rotenone toxicity to that found with organochlorine-sus-
ceptible fish. In addition, recent work has directly im-
plicated the induction of biotransformation enzymes as
one determinant of xenobiotic toxicity in fish (104). Fig-
ure 4 shows the effect of piperonyl butoxide (PBO), an
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inhibitor of P-450-dependent MO activity, and ,BNF, a
PAH-type inducer of P-450-dependent MO activity,
upon the toxicity of rotenone over a 7-day exposure to
juvenile rainbow trout. When compared to the controls,
the 120-hr LC50 of rotenone was decreased approxi-
mately 60% by 10 ppb PBO exposure and increased 23%
by 100 mg/kg INF administration. Thus, biotransfor-
mation reactions play a role in the toxicity of rotenone
and the status of the biotransformation process may be
altered significantly.
Few studies have considered the effect of induction

upon the metabolic profiles of xenobiotic chemicals in
fish. One such study has demonstrated alterations in
the metabolic profile of aflatoxin in rainbow trout with
in vivo 3NF exposure (14). These studies indicate that
aflatoxin-M1 (AFL-M1) and aflatoxicol (AFL) are the
major biliary glucuronides from 3NF-pretreated and
control trout, respectively. Similarly, changes in the
metabolic profile of BaoP have been shown to occur with
the overall increase of biotransformation following in-
duction. In vivo induction of little skate enzymes with
1,2,3,4-dibenzanthracene, for example, resulted in he-
patic microsomes that produced greater amounts ofBoLP
quinones and lesser amounts of phenols when compared
to the controls (43). Changes in BaP metabolic profiles
after induction were also noted in coho salmon and
starry flounder (105). In these species, induction in-
creased the relative proportion of BaP 9, 10-diol while
decreasing the 7,8-diol.
Only recently has the influence of induction upon

quantitative aspects of biotransformation been corre-
lated to specific P-450 isozymes in fish (106). These stud-
ies on the biotransformation of 2-MeN indicate that in
vivo ,BNF pretreatment of rainbow trout influences the
relative abundance of dihydrodiol and 2-hydroxymethyl
metabolites formed by isolated hepatic microsomes and
cytochromes P-450 (Table 5). INF stimulated the for-
mation of the 5,6- and 7,8-dihydrodiols relative to the
3,4-dihydrodiol and 2-hydroxymethylnaphthalene. The
ability of characterized rainbow trout cytochrome P-450
isozymes to metabolize 2-MeN varied considerably. The
formation of 2-hydroxymethylnaphthalene was largely
associated with the LM2 P-450-like isozyme, while the

Table 5. 2-Methylnaphthalene metabolism by hepatic
microsomes and cytochromes P-450 from rainbow trout.a

Metabolite formed, nmole/min/nmole cytochrome
2-

Enzyme Hydroxymethyl 3,4-
and sourceb metabolite Dihydrodiol

5,6-
Dihydrodiol

7,8-
Dihydrodiol

Control (Mic) 0.000 0.021 0.018 0.032
,BNF-fed 0.000 0.024 0.044 0.092

(Mic)
LM2and EH 0.160 0.011 0.027 0.016
LM4b and 0.000 0.004 0.020 0.049
EH

7,8-dihydrodiol was predominantly linked with the P1-
450-like LM4b isozyme. These studies suggest that the
products formed from the biotransformation of 2-MeN
in the trout can be related, at least in general, to specific
P-450 isozymes and their induction.
These examples serve to illustrate that the induction

of biotransformation enzymes in fish may significantly
alter both metabolism and toxicity of a xenobiotic chem-
ical. The consequences of induction in each specific in-
stance depend upon the degree of induction, the isozyme
induced, the isozyme(s) responsible for metabolism of
the chemical, and the nature of the metabolites formed.

Biotransformation may ultimately affect the dispo-
sition of xenobiotic chemicals in fish. Alterations in dis-
position are largely a result of changes in chemical and
physical properties of the compound. These alterations
influence not only elimination and hence bioaccumula-
tion, but also compartmentalization within the animal.
The effects of biotransformation upon disposition of di-
2-ethylhexyl phthalate (DEHP) were investigated in
the rainbow trout (107). This study indicated that pi-
peronyl butoxide (PBO), a P-450 inhibitor, was effective
in modifying the metabolism of DEHP in vivo by di-
minishing oxidation and hydrolysis. Table 6 indicates
that PBO caused significant increases in tissue levels of
14C-DEHP-derived label as well as a decrease in the
biliary 14C content. The alteration of disposition with
PBO appears to be largely the result of decreased me-
tabolite formation coupled with increased retention of
the parent compound (Table 7).

Studies with the use of the inducers ,BNF and Aroclor
1254 have demonstrated that the extent of induction
may influence the metabolism and subsequent disposi-
tion of certain xenobiotics in salmonids (108,109). Data
presented in Table 8 illustrate the effect of Aroclor 1254
upon the distribution of 2,6-dimethylnaphthalene
(DMN) in the coho salmon. With 100 mg/kg Aroclor,
DMN-derived radioactivity in muscle, brain and blood

Table 6. The in vivo effect of piperonyl butoxide on 14C-di-2-
ethylhexyl phthalate (DEHP) disposition in rainbow trout.a

14C concentration, as ,uglg DEHP
With piperonyl

Tissue Control butoxide
Muscle 0.021 ± 0.003 0.041 ± 0.006*
Blood 0.142 ± 0.017 0.234 ± 0.01*
Bile 51.4 ± 5.5 26.2 ± 2.8*
Liver 0.86 ± 0.08 1.08 ± 0.15
aAdapted from Melancon et al. (107).
*Significantly different from control, p > 0.01.

Table 7. Effect of piperonyl butoxide in vivo on accumulation of
di-2-ethylhexyl phthalate and mono-2-ethylhexyl phthalate

(MEHP) in rainbow trout muscle.a

% of total 14C
Treatment DEHP MEHP
Control 46.6 41.8
Piperonyl butoxide (1 ppm) 76.5 18.4
aAdapted from Melancon et al. (107).

aAdapted from Melancon et al. (106).
bLM, liver microsomes; LM2 P-450 isozyme involved in aflatoxin

B1 metabolism; LM4b (Pi-450, P-448), isozyme inducible with PAHs.
EH, epoxide hydrolase.

12



BIOTRANSFORMATION AND INDUCTION IN FISH

Table 8. Effects of PCB on "4C-dimethylnaphthalene levels in
coho salmon tissues.a

"4C-Dimethylnaphthalene level, DPM/mLb
0.0 mg PCB/kg
body weight

Bile 4400 ± 1000 (15)
Liver 160 ± 24 (17)
Brain 44 ± 8.6 (19)
Muscle 40 ± 9.2 (19)
Blood 11 ± 2.9 (16)
aAdapted from Collier et al. (108).
bX ± SEM (N).
* Significant effect due to PCB exposure.

100 mg PCB/kg
body weight

9100 ± 1800 (16)*
170 31 (18)
29 + 6.6 (18)*
24 5.4 (18)*
8.8 ± 2.0 (18)*

decreased, but biliary levels of DMN metabolites in-
creased. Table 9 illustrates similar effects of PNF upon
the disposition of 2-MeN and naphthalene in rainbow
trout (109). For these compounds, 3NF induction re-
sulted in lower 14C residues in muscle and blood, while
increasing biliary excretion.
Although bioconcentration of organic xenobiotics in

fish is largely a function of lipophilicity, it is evident
from the foregoing discussion that biotransformation
can play an important role in modifying accumulation.
A number of studies have demonstrated that biotrans-
formation can effect fish bioconcentration factors (BCF)
for xenobiotics (110,111). One such study with Gam-
busia affinis in a model ecosystem indirectly considered
the effects of biotransformation upon the bioconcentra-
tion of two xenobiotics: DDT [2-bis(p-chlorophenyl)-
1,1,1-trichloroethane] and 2-bis(p-methylthiophenyl)-
1,1, 1-trichloroethane (110). Although these structurally
related compounds have similar lipid solubilities, BCFs
were 84,500 and 5.5 for DDT and 2-bis-(p-methylthio-
phenyl)-1,1,1-trichloroethane, respectively. However,
the latter compound was readily metabolized. As one
might expect, such discrepancies occur when experi-
mentally determined BCF values are compared to val-
ues predicted from water solubility alone. Another
study, of bluegills exposed to an alkylbenzene com-
pound, reported a BCF of 35 (111). Again, the difference
between this value and the predicted BCF values of
6300 could be attributed to metabolism.

Environmental Induction
Several experimental approaches have been used to

demonstrate the induction of MO activity in fish expo-
sure to low levels ofinducers present in the environment
at large. Among these, the most convincing evidence of
environmental induction has come from well controlled
studies of changes in hepatic microsomal MO activities
in fish exposed to polluted water in the laboratory or in
the field. Exposure to pollutants was accomplished
either by pumping contaminated water into tanks in the
laboratory (112) or by suspending cages of fish in pol-
luted water in situ (113). Laboratory studies maintained
similar temperature, photoperoid and diet for treatment
groups and controls. They provide evidence of environ-
mental induction irrespective of other factors that may
influence MO activity (112). Figure 5 shows the results
of one such study. The data indicate an initial rapid
increase in enzyme activity followed by a stabilization
at a level significantly higher than controls. When the
induced fish were removed to clean water, the enzyme
activity dropped to near control levels in approximately
25 days. This was presumably due to the lack of con-
tinued induction and the turnover of existing enzyme.

Additional evidence ofenvironmental induction comes
from comparisons ofMO activity in fish from areas class-
ified as clean or polluted (Table 10). Most of these stud-
ies indicate elevated MO activities with exposure to
polluted environments. In contrast, one study with
northern pike showed a significant decline in MO activ-
ity with exposure in a polluted lake (114). The authors
suggest that the decline was associated with hepatic
injury. Similar studies have been performed with em-
bryos and fry derived from eggs collected from fish with
PCB burdens. These studies demonstrated vertical
transmission of the inducer (117) and the subsequent
induction of MO activity in early developmental stages
(118). Hepatic AHH activities in embryos and fry from
PCB-contaminated eggs were 4- to 8.6-fold higher than
controls. In addition to providing evidence of environ-
mental induction, these studies illustrate that age and
pollutant transfer dynamics may significantly influence
metabolism and toxicity of xenobiotics in the environ-
ment at large.

Table 9. Metabolism and disposition of 14C-labeled chemicals in rainbow trout as a result of preadministration of 1-naphthoflavone
(PNF).a

Controlb 3NF-Treatedb
Tissue level of parent Tissue level of parent
chemical metabolites, chemical metabolites,

Chemical Tissue pig/g or mL Metabolites, % p.g/g or mL Metabolites, %
2-Methyl- Bile 150 + 24 96 1233 + 201 100

naphthalene Muscle 4.9 2 2.6 10
Liver 10.8 10 5.0 40
Blood 3.3 ± 0.2 1.9 ± 0.1

Naphthalene Bile 67.2 ± 5.1 98 308.8 ± 21.1 99
Muscle 2.25 ± 0.23 5.1 ± 0.4 1.25 ± 0.16 12.3 ± 0.9
Liver 2.05 ± 0.12 8.5 ± 0.5 1.72 ± 0.01 24.0 ± 1.8
Blood 1.83 ± 0.23 0.97 + 0.08

aAdapted from Melancon and Lech (109).
bValues are means ± SE.
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FIGURE 5. Effect of river water exposure on carp hepatic micro-
somal ethoxyresorufin 0-deethylase activity: (*) carp maintained
in dechlorinated city water; (0) carp exposed to river water;
(0) carp exposed to river water, then transferred to dechlorinated
city water. Adapted from Melancon et al. (112).

Several studies have utilized the MO inhibitor ax-na-
phthoflavone (cxNF) to investigate induction in experi-
mentally (53,65) and environmentally exposed animals
(54). In some cases, oxNF inhibits 3-MC-inducible MO
activity, but constitutive activity is stimulated or un-
affected. Winter flounder collected from a single area
in New England waters exhibited wide variation in
AHH and EROD activities (119). Those fish exhibiting
low AHH activities were stimulated by xNF exposure,
whereas those with elevated AHH activities were in-
hibited. Based on earlier studies on the specificity of
cxNF on hepatic MO activity in the flounder, these fish
were considered "noninduced" and "induced," respec-
tively. Discrimination of induced animals from nonin-
duced has been demonstrated in several species, in-
cluding the little skate (64), croaker (54), and chub (113),
by using aNF. However, results with sheepshead (65),
carp (60,113), rainbow trout (50), and lake trout (118)
did not always conform to this pattern. Furthermore,
all scup collected from the marine environment have
had elevated AHH activity which was responsive to
inhibition by cxNF (54). Apparently, all of these animals

were induced, or the scup constitutive P-450 isozymes
were of the 3-MC-induced forms. Clearly, it cannot be
routinely assumed that cxNF will discriminate induced
from control fish for every combination of tissue, spe-
cies, and MO assay.

Induction of MO activity by low levels of chemicals
in the environment has generated interest in the dose-
response relationship and the minimum effective dose
necessary to cause induction in fish. Several studies
have demonstrated dose-dependent (MO) induction
(70,120,121). Table 11 summarizes the minimum effec-
tive dose for induction in these studies. Although it is
clear that induction can occur experimentally and en-
vironmentally at similar levels, the relationship of ef-
fects from single dose administrations to those from
chronically acquired environmental body burdens is still
unknown.

Biotransformation, Induction, and
Monitoring
Evidence of biotransformation and induction in fish

has generated interest in the use of these mechanisms
to monitor xenobiotic chemicals in the environment. At
present, induction as an environmental monitoring tool
appears to have its greatest utility as a general indicator
of contamination rather than for the identification of
specific compounds. However, recent advances with im-
munochemical techniques in conjunction with inhibitor
and protein separation methods may in the future pro-
vide the basis for definition of classes of inducers by
correlations with specific P-450 isozyme induction.
Recent studies have identified various factors such as

inducer response, temperature (94), sex, and age (53)
which may complicate the utility of induction as a mon-
itoring tool. For example, numerous studies have in-
dicated that P-450-dependent MO activity in fish ap-
pears to respond largely (or solely) to 3-MC-type
inducers (Table 4). If this is true, lack of MO induction
would not rule out contamination by other classes of
agents. Conversely, MO induction would indicate, at
least grossly, the presence of a 3-MC-type or novel in-
ducing agent in the environment. However, certain fish
species do not demonstrate a response to inducers when
treated with certain prototype substrates. For exam-
ple, carp exposed to Aroclor 1254 and 3NF did not
exhibit elevations in MO activity assayed with ECOD
(60). In contrast, AHH and EROD induction in carp and
increased ECOD activities in other species (50) were
observed. As a final caution, recent evidence has sug-
gested that with certain agents, P-450 induction may
be tissue-selective. Payne et al. (123) showed that floun-
der exposed to an oil spill exhibited induction of MO
activity in kidney, but not in liver. These data suggest
that before the presence of induction (or lack thereof)
may be used as an indicator of environmental pollution,
both substrate and tissue specificities of P-450-depen-
dent MO activities in a given indicator species must be
carefully characterized and appropriate tissues and pro-
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Table 10. Hepatic monooxygenase activity in fish from different areas.

Enxyme activity units/
Species Type enzyme activity" Source of fish unit proteinbc' Reference
Carp EROD Hatchery 0.21 ± 0.10 (15) (112)

"Polluted" area 4.72 ± 2.99 (13)
Brown trout AHH "Clean" lake 26.5 ± 19.4 (8) (46)

"Polluted" lake 362 ± 51 (3)
Fundulus AHH "Clean" area 89 ± 28 (64) (115)

"Clean" area 74 ± 33 (69)
"Polluted" area 109 ± 19 (53)
"Polluted" area 109 ± 32 (148)

Fundulus AE "Clean" area 0.34 ± 0.07 (3) (70)
"Polluted" area 0.63 ± 0.08 (5)

Cunner AHH "Clean" area 16.0 ± 7.6 (10) (116)
"Clean" area 19.9 ± 6.6 (9)
Refinery area 53.2 ± 25.2 (10)
"Polluted" area 46.6 + 6.7 (8)

Northern pike AHH "Clean" lake 18 ± 12 (6) (114)
"Polluted" lake 3 ± 2 (7)

aAHH, aryl hydrocarbon hydroxylase; AE, aldrin epoxidation; EROD, ethoxyresorufin-O-deethylase.
b + Standard deviation.
'Numbers in parentheses indicate number of fish.

Table 11. Hepatic microsomal monooxygenase induction by low
doses of polychlorinated biphenyls and polycyclic aromatic

hydrocarbons.

Monooxy- Minimum
Inducing genase effective
agent Species activity dose, mg/kg Reference
Clophen A50 Rainbow PNAOD 10 (72)

trout
3,4,3,4'-Te- Rainbow ECOD, 0.01 (121)

trachlorobi- trout EROD
phenyl

Benzo(a)- Rainbow AHH 0.3 (120)
pyrene trout

Aroclor 1254 Rainbow ECOD, 0.2 (121)
trout EROD

Aroclor 1254 Carp EROD 0.2 (121)
"PNAOD, p-nitroanisole O-demethylase; ECOD, ethoxycoumarin-

O-deethylase; EROD, ethoxyresorufin-O-deethylase; AHH, aryl hy-
drocarbon hydroxylase.

totype substrates selected for analysis. Finally, as in-
dicated earlier in this review, temperature, sex, and
age may profoundly affect the induction process. Thus,
one must also be concerned that attenuation of the in-
ductive response because of varying environmental and
physiological factors could make it difficult to assess
exposure in free ranging fish living in slightly to mod-
erately contaminated waters.
As an alternative approach, early investigations sug-

gested that determination of xenobiotic biotransfor-
mation products in fish bile might provide a means for
monitoring waterborne chemicals (124). Several studies
have indicated that xenobiotics present at low levels in
the environment (or their metabolites) might be con-
centrated in fish bile to levels facilitating their analytical
detection (109,125). Furthermore, monitoring of biliary
biotransformation products permits detection of polar
metabolites, which might otherwise go undetected in
conventional residue monitoring studies.

In conclusion, it is clear that relationships) between

biotransformation and enzyme induction, on the one
hand, and toxicity, bioaccumulation and monitoring of
xenobiotic chemicals in aquatic species, on the other
hand, requires further investigation. The significance
of induction to the disposition and toxicology of pollu-
tants in the environment, the possible use of induction
as an environmental monitoring tool, and the relation-
ship of biotransformation to specific P-450 isozymes are
several of the newer areas in aquatic toxicology that
may further our understanding of chemicals in the
aquatic environment.
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